EOP, a newly synthesized ethyl pyruvate derivative, attenuates the production of inflammatory mediators via p38, ERK and NF-κB pathways in lipopolysaccharide-activated BV-2 microglial cells.

نویسندگان

  • Soon Min
  • Sandeep Vasant More
  • Ju-Young Park
  • Sae-Bom Jeon
  • Shin Young Park
  • Eun-Jung Park
  • Sung-Hwa Yoon
  • Dong-Kug Choi
چکیده

Microglia-induced neuroinflammation is an important pathological mechanism influencing various neurodegenerative disorders. Excess activation of microglia produces a myriad of proinflammatory mediators that decimate neurons. Hence, therapeutic strategies aimed to suppress the activation of microglia might lead to advancements in the treatment of neurodegenerative diseases. In this study, we synthesized a novel ethyl pyruvate derivative, named EOP (S-ethyl 2-oxopropanethioate) and studied its effects on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in rat primary microglia and mouse BV-2 microglia. EOP significantly decreased the production of NO, inducible nitric oxide synthase, cyclooxygenase and other proinflammatory cytokines, such as interleukin (IL)-6, IL-1β and tumor necrosis factor-α, in LPS-stimulated BV-2 microglia. The phosphorylation levels of extracellular regulated kinase, p38 mitogen-activated protein kinase, and nuclear translocation of NF-κB were also inhibited by EOP in LPS-activated BV-2 microglial cells. Overall, our observations indicate that EOP might be a promising therapeutic agent to diminish the development of neurodegenerative diseases associated with microglia activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

A novel synthetic HTB derivative, BECT inhibits lipopolysaccharide-mediated inflammatory response by suppressing the p38 MAPK/JNK and NF-κB activation pathways.

Activated microglia cells are well recognized as mediators of neuroinflammation, as they release nitric oxide and pro-inflammatory cytokines in various neuroinflammatory diseases. Thus, suppressing microglial activation may alleviate neuroinflammatory and neurodegenerative processes. In the present study, we synthesized and investigated the anti-neuroinflammatory effect of a novel HTB (2-hydrox...

متن کامل

Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced m...

متن کامل

L-Ascorbate Attenuates the Endotoxin-Induced Production of Inflammatory Mediators by Inhibiting MAPK Activation and NF-κB Translocation in Cortical Neurons/Glia Cocultures

In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among pat...

متن کامل

Anti-neuroinflammatory activity of a novel cannabinoid derivative by inhibiting the NF-κB signaling pathway in lipopolysaccharide-induced BV-2 microglial cells.

Microglial-mediated neuroinflammation has recently been implicated as one of the important mechanisms responsible for the progression of neurodegenerative diseases. Activated microglia cells produce various neurotoxic factors that are harmful to neurons. Therefore, suppression of the inflammatory response elicited by activated microglia is considered a potential therapeutic target for neurodege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2014